

# Insensitive Munitions Modeling Improvements

S. DeFisher<sup>1</sup>, D. Pfau<sup>1</sup>, C Dyka<sup>2</sup> <sup>1</sup> U.S. Army ARDEC Picatinny Arsenal, NJ 07806-5000

<sup>2</sup> U.S. Naval Warfare Center, NSWC-DD Dahlgren, VA



LAWRENCE LIVERMORE NATIONAL LABORATORY Science in the National Interest

### Outline

- Background
- Scenario of interest
- Current code use example
- Improvements
  - CTH/SIERRA
  - ALE3D
- Other ongoing work
- Conclusion

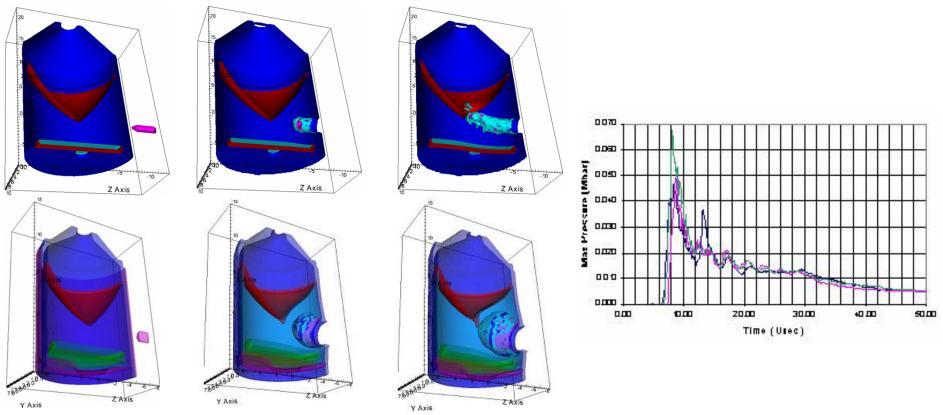
#### Background

- Lack of Insensitive Munitions (IM) compliance has caused the loss of hundreds of lives, millions of \$\$ of material, and reduced operational capability
- Most warheads behave violently when subject to various external insults such as bullet and fragment impact
- Mil-STD 2105C governs IM related testing
  - 5 levels of severity; Type I Detonation Type V Burning
- STANAGs supplement Mil-STD 2105C



## Background continued...

- Improving IM performance through the exclusive application of testing is expensive and takes a lot of time (limited facilities with busy schedules, encroachment, etc.)
- Modeling is often used in conjunction with testing but is far from ideal
  - "Holy Grail" Type I Type V delineation between violence and frag velocity, number of fragments, etc.
  - Often used (successfully) for qualitative comparisons
    - Sympathetic detonation (SD)
    - Bullet Impact (BI)
    - Fragment Impact (FI)
  - Also for reaction temperature and time for slow cook-off (SCO)
- If modeling predicted system response more accurately, it could be used more often and earlier in the design cycle saving time and \$\$


## Background continued...

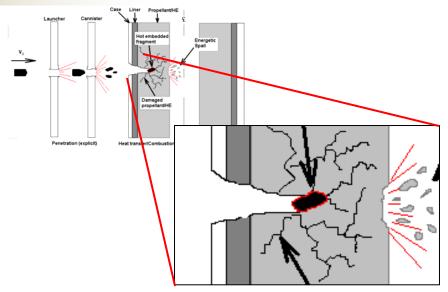
- The U.S. DoD High Performance Computing Modernization Office (HPCMO) recognized this and funded this effort to improve two commonly used codes (numerical implementation only, no testing)
  - CTH/SIERRA
  - ALE3D
- This effort builds on the previous multi-phase flow and target response portfolio (MFT) that developed these capabilities to a rudimentary level. DoD demonstration with DOE code development
- IM related phenomena are often complex and span a variety of length and time scales. To make the problem tractable only bullet and fragment impact (BFI) were chosen with focus on
  - Multi-phase flow
  - Code coupling
  - Particle methods, fragmentation (statistical variation), and transport

#### Scenario of Interest Case Liner Propellant/HE Cannister Launcher £ Hot embedded Energetic fragment Spall Damaged propellant/HE Penetration (explicit) Heat transfer/Combustion (implicit) DDT, XDT (explicit)

- Physically, geometrically, and numerical complex scenario necessitating a treatment of both explicit and implicit phenomena.
- Penetration, shearing, fracture and debris generation, chemistry (explicit), heat transfer, combustion, multi-phase flow (implicit), shock to detonation transition (SDT) or cook-off like transition to detonation (explicit)
- Made more difficult by incomplete physical understanding (shear initiation eg.), a variety of response levels that vary w/velocity, and inclusion of materials which are non-detonable (not 1.1 Hazard Class)

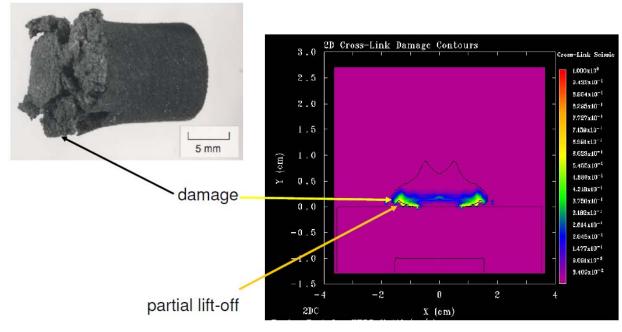
#### **Current Code Use Example**




- BI (2789 fps) and FI (6000-8300 fps) are routinely modeled
- Pressure history of the billet is interrogated allowing a designer to *qualitatively* compare one design to the next
- Many aspects of physical behavior simply aren't accounted for thus limiting accuracy of predicting overall response

#### eleleleterer

## **CTH/SIERRA Background**


- CTH is Sandia National Laboratory's (SNL) explicit hydrocode and is heavily used by the DoD for various performance models
- It is an explicit Eulerian code which can not be used to solve long time scale (implicit) events and just one code contained in the SIERRA suite
- SNL's philosophy was that individual areas (fluid flow, hydrodynamics, heat transfer, etc.) were each complicated enough to warrant their own code. These approach is different from LLNL's
- SIERRA is the framework that handles all data transfer/coupling between codes (wrapper) and handles/couples a number of codes
  - Aria (implicit, porous flow)
  - Presto (explicit Lagrangian formulation)
  - Adagio (implicit structural analysis)
  - Others

## **CTH/SIERRA Improvements**



- SNL focused heavily on this area
  - Multi-phase flow of gaseous-solid interaction required handling multiple EOSs (solid and gaseous) and their use by explicit codes (CTH)
  - Reaction varies heavily with damage (burning eg.) so SNL also implemented a coupled damage reactivity model which closely matched experiments

#### CTH/SIERRA Improvements continued...

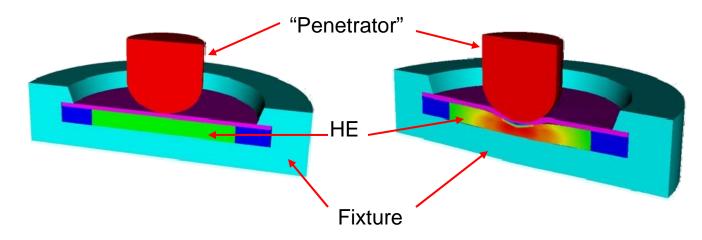


Taylor test coupled damage and reactivity model experiment and numerical prediction

- Code coupling is critical within a framework that uses distinct codes to model specific phenomena
  - Explicit to explicit (CTH to Presto) via shell elements
  - Implicit (Aria) to explicit (CTH)

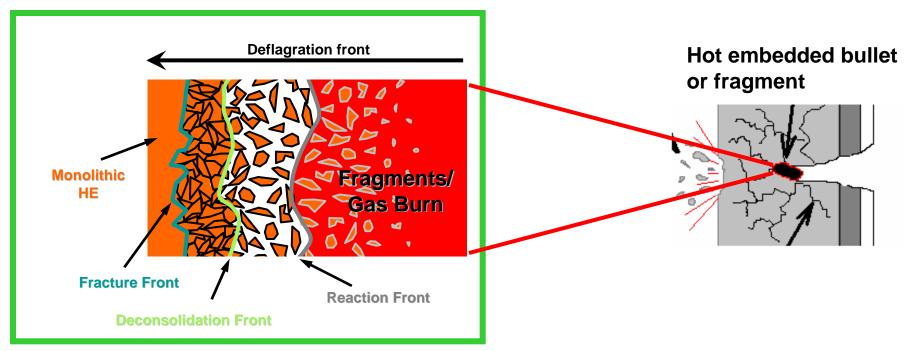
#### CTH/SIERRA Improvements continued...

- Statistical variation of fracture now possible (as well as most parameters) within an explicit code
- Because particle routines (SPH) already existed within Presto, other improvements were made including, but not limited to improvements to material models incorporating more advanced thermal, mechanical and chemical behavior


## ALE3D Background

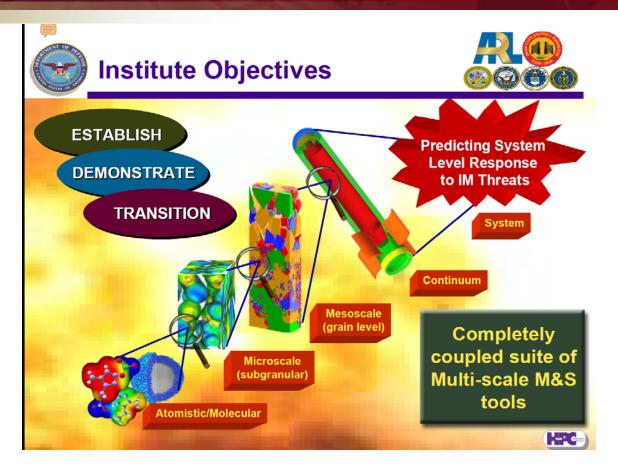
- ALE3D is Lawrence Livermore National Laboratory's (LLNL) multi-physics code
- Unlike CTH, it is an Arbitrary Lagrangian Eulerian (ALE) code. It is monolithic and has the ability to model a variety of phenomena including hydrodynamics, chemistry, heat transfer, fluid flow, and thermal effects and has the ability to transition from explicit to implicit and back within a single code
- Rather than being coupled, like would be required if separate codes were used, the various physical phenomena are merely called or neglected as the designer sees fit. Everything runs from a single deck/single program instance

## **ALE3D Improvements**


- Multi-phase flow improvements include implementation and enhancing robustness of 3+ phase reactive flow.
- Development and implementation of a sub-grid probability density function (PDF) for enhancement of fracture localization and fragmentation
  - Would like to be able to predict adiabatic shear banding

### ALE3D Improvements continued...




- Since no "code coupling" was required other areas were developed including sub-detonative response
- The simulation above is of a Steven Test and agrees well with the experimental data. It uses a relatively low speed blunt penetrator impacting a heavily confined HE sample. Depending on velocity (10-100m/s) reaction may or may not occur and when it does, it is typically less than a full detonation
- Enhancement of a propellant model, built on the classic Lee-Tarver Ignition and Growth model to model non HE behavior (pressure threshold for ignition) both with and without hot spots

## ALE3D Improvements continued...



- Introduction of a method of coupling damage and reaction with a burn rate between laminar and full detonation
- Introduction of rudimentary particle methods (SPH) with more fidelity than element death

## Other Ongoing Work



- This effort is not comprehensive. Much more work remains and/or is ongoing
- See Bill Davis' poster for more details about the IM Institute and their work in multi-length scale modeling

### Conclusion

- Codes currently used to model BFI are far from ideal but are still used to within their range of validity (being stretched)
- This work was an effort to improve the fidelity with which two codes commonly used by the US DoD can simulate BFI scenarios
- They are useful but require much more development and validation to be truly predictive



# Questions?